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Abstract

Blood pressure (BP) fluctuates throughout the day,
mainly due to circadian oscillations as well as a response
to physical and mental stimuli. This study aims at in-
vestigating whether machine learning (ML) classifiers can
detect hypertension pathology regardless of absolute BP
values. The goal is to identify HTS patients from non-
HTS recordings and NTS subjects from non-NTS record-
ings using photoplethysmography (PPG) and electrocar-
diography (ECG). 803 simultaneous PPG, ECG and inva-
sive BP recordings from 51 subjects were analyzed. 668
were coherent BP segments, with high BP for HTS patients
and normal BP for NTS subjects, and 135 were incoherent
segments, with normal BP for HTS patients and high BP
for NTS subjects. PPG and BP relationship was evaluated
with discriminant features and classification models were
employed to classify incoherent segments. Using the dis-
criminant features of coherent segments for training and
the set of incoherent segments for validation, K-nearest
neighbors provided the best outcomes, with F1-score of
88.30%. Combining PPG and ECG recordings with ML-
based methodologies would be of high interest for hyper-
tension screening, so that HTS and NTS subjects could be
properly discerned even in the case of incoherent or altered
BP values. This method could be used as a support for
clinical decision-making when diagnosing hypertension.

1. Introduction

Blood pressure (BP) is one of the main vital signs as hy-
pertension is an early indicator of cardiovascular disease
(CVDs). Systolic and diastolic BP are not static, chang-
ing from one pulse to another and as a result of circadian
rhythm throughout the day. BP variability is larger in hy-
pertensive (HTS) patients than in normotensive (NTS) sub-
jects, being proportional to the increase in mean BP [1].

Exercise, stress, drugs and nutrition are external factors
that may change BP [2]. White-coat hypertension and
masked hypertension are two popular concepts associated
to BP variability. They are characterized by elevate of-
fice BP for normotensive subjects caused by anxiety or re-
sponding to unusual clinical settings and normal office BP
in hypertensive subjects [1].

Nowadays, BP is mainly measured by obstructive inflat-
able cuffs that provide accurate BP readings. However,
cuff-based devices offer one-shot measurements, not al-
lowing continuous evaluation of BP state throughout the
day. Moreover, they are not wearable, are uncomfortable
and their procedure is cumbersome and require patient at-
tention and knowledge [3]. In the event of a variation in
BP when the measurement is being carried out, the risk of
hypertension would be misdiagnosed, what would avoid
an early diagnosis of HTS subjects or wrongly labeling as
HTS healthy subjects. This motivates the need for moni-
toring devices to screen hypertension in a continuous and
unobstructive way.

The proposed method consists of machine learning
(ML) classification models trained to predict if the ana-
lyzed subjects were NTS or HTS in the case of altered BP
values. Thus, this method detects the hypertensive condi-
tion and not a punctual BP value that could be affected by
short or long term BP variations. The employed physio-
logical signals were electrocardiogram (ECG) and photo-
plethysmogram (PPG) recordings, as they can be obtained
in a simple, noninvasive and low cost way by wearable de-
vices and their waveform is related to changes in total and
pulsatile tissue blood volume [4].

To achieve the aforesaid purpose of detecting the hyper-
tension pathology regardless of absolute BP values, PPG
morphological features combined with propagation fea-
tures from the ECG were derived and analyzed from simul-
taneous PPG and ECG recordings and employed as inputs
for the classification models.

Computing in Cardiology 2022; Vol 49 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2022.093



2. Materials and Methods

2.1. Data processing

ECG, PPG and invasive BP recordings were obtained
from the MIMIC database, which contains simultaneous
recordings from ICU patients [5]. In order to remove mi-
nor noises and artifacts, PPG signals were processed by a
fourth order Chebyshev II bandpass filter with cutoff fre-
quencies between 0.5 Hz and 10 Hz [6]. Furthermore, for
signal comparison improvement, PPG mean value was re-
moved. In addition, the velocity plethysmogram (VPG)
and the acceleration plethysmogram (APG) were obtained
by applying the first and the second order derivatives to the
processed PPG signal.

Each ECG was high-pass filtered with cutoff frequency
of 0.5 Hz to remove the baseline, and then low-pass filtered
with cutoff frequency of 50 Hz to reduce high-frequency
muscle noise and power line interference [7]. Finally, fore-
ach ECG recording, an R-peak detector based on the pha-
sor transform was applied to the processed ECG signal to
obtain the position of each beat [8]. The BP value was ob-
tained from the maximum systolic BP, the maximum peak
from each BP pulse without requiring pre-processing. Ar-
tifacts causing very noisy recordings or morphologically
distorted signals were dismissed.

33 subjects with predominant BP values below 120
mmHg were labeled as NTS and 18 subjects with pre-
dominant BP values over 140 mmHg were labeled as HTS.
From them, 668 segments were extracted with coherent BP
segments, having high BP for HTS patients and normal BP
for NTS subjects. In addition, 135 incoherent segments,
with normal BP for HTS patients and high BP for NTS
subjects were obtained, representing recordings with BP
alterations. All PPG, ECG and invasive BP were recorded
simultaneously with a duration of 120 seconds, a common
sampling frequency of 125 Hz and a resolution of 8-10
bits [9]. Then, this recordings were divided into 12 seg-
ments with a duration of 10 seconds to increase training
and validation datasets.

As represented in Figure 1, for each recording, the sys-
tolic peaks from PPG, VPG and APG signals (S, W, a),
the initial pulse point from PPG signal (O), and two local
maxima and minima of the APG signal (b, c, d, e) were
extracted [10]. For fiducial points definition, thresholds
and slope criteria were established after obtaining all local
minima and maxima from pulses.

2.2. Features extraction

Discriminatory features were defined to evaluate the
relationship between BP and PPG signal. Pulse wave
propagation theory features were pulse arrival times
(PAT) or time interval between R-peak and the O-notch
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Figure 1. Fiducial points definition from photoplethysmo-
gram (PPG), velocity plethysmogram (VPG) and acceler-
ation plethysmogram (APG) signals.

(PATfoot), W peak of VPG signal (PATderivate) and S-
peak (PATpeak), and pulse transit time (PTT) or time in-
terval between BP signal peak and S-peak. Moreover, mor-
phological theory based features as S and W amplitudes,
time peak to peak (TPP), time pulse interval (TPI), rising
time, width, pulse areas, ratio between areas, time inter-
val between two consecutive a-peaks in APG signal, ratios
between APG waves and a-wave and complex APG ratios
were defined and illustrated in Figure 2 [10, 11].
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Figure 2. Representation of PAT defined features and PPG
morphological parameters.

Then, a feature selection stage was carried out to select
only those features with relevant information for the classi-
fication task. Relieff algorithm was applied to rank the nor-
malized features. Those variables that did not provide new
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information were discarded studying the correlation ma-
trix. Finally, the last three ranked features as well as three
features with high correlation with other features were re-
moved, obtaining a matrix of 17 normalized features used
as input for the classification models.

2.3. Experimental details

As stated before, the aim of this work is to investigate if
PPG recordings are correctly classified when an alteration
in BP from the analyzed subject occurs. Discriminant fea-
tures after feature selection from coherent segments were
used to train the classification models and discriminant fea-
tures from incoherent segments were used for validation.

Searching the best ML-based classification model for
the hypertension screening task, up to 37 different classifi-
cation strategies were tested, including support vector ma-
chines (SVM), decision trees, discriminant analysis, logis-
tic regression, Naive Bayes, K-Nearest Neighbors (KNN)
and ensemble classifiers [12]. Finally, Fine KNN, Cubic
SVM and Bagging Ensemble were selected because they
provided the highest classification accuracy percentages.

Accuracy (Acc), sensitivity (Se), specificity (Sp) and F1-
Score statistical tests were employed to assess the classi-
fication performance. Acc represented the correctly clas-
sified PPG segments percentage. Se was defined as the
ability to detect as positive incoherent segments from HTS
subjects, whereas Sp was defined as the ability to detect as
negative incoherent segments from NTS subjects. Finally,
F1-Score was considered to be the harmonic mean of Se
and Acc.

3. Results

Table 1 presents the statistical results of this study. It can
be seen that the classification model that provided the best
outcomes was Fine KNN, with F1-Score of 88.30%. Cu-
bic SVM and Bagging Ensemble classifiers worsened the
results in the four statistical tests studied. High Sp values
in the three classification models reflected correctly identi-
fied NTS individuals when BP reached prehipertensive or
HTS values.

Table 1. Performance of the three classification models
analyzed to screen hypertension under Non-Hypertensive
BP recordings and normotension under hypertensive BP
recordings. Accuracy (Acc), sensitivity (Se), specificity
(Sp) and F1-Score.

Acc Se Sp F1-Score
KNN 83.70% 79.81% 96.77% 88.30%
SVM 75.56% 72.12% 87.10% 81.97%
Ensemble 79.26% 75.00% 93.55% 84.78%

4. Discussion

Cuff-less devices providing continuous BP monitoring
are of great interest for the early detection of hypertension,
one of the main risk factors for many CVDs. Their objec-
tive is to obtain and process physiological signals to train
artificial intelligence models and obtain BP information as
systolic BP values or the hypertension risk level. The most
used signal for this task is PPG, as is simple, low cost, non-
invasive and directly related to changes in blood volume.

However, most BP monitoring devices provide punc-
tual information and artificial intelligence methods provide
an BP value estimation [13]. Thus, in case of BP vari-
ation caused by physical or mental stimuli, the diagnosis
of the BP condition would not be adequate. For this rea-
son, the present study investigated if an adequate subject
diagnosis is provided in case of altered BP. To this end,
a combination of propagation features requiring ECG sig-
nal and PPG, VPG and APG morphological features were
extracted to train ML-based models for the classification
task.

Any previous study about hypertension risk assess-
ment has studied the hypertension detection under non-
hypertensive BP recordings. Radha et al. [14] estimated
the nocturnal BP dip through PPG sensors and a deep
neural network. Long- and short-term memory (LSTM)
networks, dense networks, random forests, and linear re-
gression models were employed to track the trends in BP.
Finnegan et al. [15] investigated the presence of circadian
rhythm in PAT and its applications in nocturnal BP dip or
rise classification, as it is a strong indicator for CVDs.

The present study proposed incorporating coherent seg-
ments from each subject for training and incoherent seg-
ments corresponding to BP variations for validation. Fine
KNN provided the best classification results, with F1-
Score of 88.30%. Sp result was almost perfect, 96.77%,
whereas Se was almost 17% lower. This indicated that BP
variations affected less to PPG characteristics of NTS sub-
jects than PPG characteristics of HTS subjects.

This approach demonstrated that the proposed classifi-
cation models provided an adequate hypertension risk as-
sessment in the subjects analyzed regardless of absolute
BP values. This fact is of high interest as high accuracy
was obtained despite physical or mental stimuli that caused
BP variability.

5. Conclusions

The combination of discriminant features extracted from
PPG and ECG recordings with ML-based classification
methodologies would be of high interest for the continuous
monitoring of the subject’s hypertensive condition. Thus,
HTS and NTS subjects could be properly discerned even
in the case of incoherent or altered BP values caused by
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long and short term BP variability. The incorporation of
this new methodologies in cuff-less devices could be used
as a support for clinical decision-making when diagnosing
hypertension in a continuous and unobstructive way.
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José J. Rieta
BioMIT.org, Electronic Engineering Department, Building 7F-5
Universitat Politecnica de Valencia
Camino de Vera, s/n, 46022, Valencia, Spain
E-mail: jjrieta@upv.es

Page 4


